Quantcast
Channel: Latest Results
Viewing all articles
Browse latest Browse all 2

Morphology evolution, conductive and viscoelastic behaviors of chemically reduced graphene oxide filled poly(methyl methacrylate)/poly(styrene- co -acrylonitrile) nanocomposites during annealing

$
0
0

Abstract

The effect of chemically reduced graphene oxide (CRGO) on the phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends and the simultaneous response of rheological and conductive behavior of PMMA/SAN/CRGO nanocomposites upon annealing above the phase-separation temperatures were investigated. The introduction of CRGO causes the decrease of binodal temperature and the increase of spinodal temperature for PMMA/SAN blends and then enlarges their metastable regime. During annealing, the well-dispersed CRGO in the homogeneous blend matrix tends to be selectively located in the SAN-rich phase with the evolution of phase separation and then the CRGO further agglomerates effectively in the SAN-rich phase to form the conductive pathway. Thermal-induced dynamic percolation is observed for both the resistivity ρ and dynamic storage modulus G′ as a function of annealing time. The resistivity variation is ascribed to the agglomeration of CRGO in the SAN-rich phase, while the modulus evolution is attributed to the combined contribution of phase separation for blend matrix and the agglomeration of CRGO in the SAN-rich phase.


Viewing all articles
Browse latest Browse all 2

Latest Images

Trending Articles





Latest Images